fermentord/vendor/github.com/gofrs/uuid/generator.go
Søren Rasmussen 07a23c1845
Some checks reported errors
continuous-integration/drone/push Build encountered an error
Upgrade to go 1.20 and add vendor catalog
2023-04-22 10:37:23 +02:00

573 lines
16 KiB
Go

// Copyright (C) 2013-2018 by Maxim Bublis <b@codemonkey.ru>
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
package uuid
import (
"crypto/md5"
"crypto/rand"
"crypto/sha1"
"encoding/binary"
"errors"
"fmt"
"hash"
"io"
"net"
"sync"
"time"
)
// Difference in 100-nanosecond intervals between
// UUID epoch (October 15, 1582) and Unix epoch (January 1, 1970).
const epochStart = 122192928000000000
type epochFunc func() time.Time
// HWAddrFunc is the function type used to provide hardware (MAC) addresses.
type HWAddrFunc func() (net.HardwareAddr, error)
// DefaultGenerator is the default UUID Generator used by this package.
var DefaultGenerator Generator = NewGen()
// NewV1 returns a UUID based on the current timestamp and MAC address.
func NewV1() (UUID, error) {
return DefaultGenerator.NewV1()
}
// NewV3 returns a UUID based on the MD5 hash of the namespace UUID and name.
func NewV3(ns UUID, name string) UUID {
return DefaultGenerator.NewV3(ns, name)
}
// NewV4 returns a randomly generated UUID.
func NewV4() (UUID, error) {
return DefaultGenerator.NewV4()
}
// NewV5 returns a UUID based on SHA-1 hash of the namespace UUID and name.
func NewV5(ns UUID, name string) UUID {
return DefaultGenerator.NewV5(ns, name)
}
// NewV6 returns a k-sortable UUID based on a timestamp and 48 bits of
// pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit
// order being adjusted to allow the UUID to be k-sortable.
//
// This is implemented based on revision 02 of the Peabody UUID draft, and may
// be subject to change pending further revisions. Until the final specification
// revision is finished, changes required to implement updates to the spec will
// not be considered a breaking change. They will happen as a minor version
// releases until the spec is final.
func NewV6() (UUID, error) {
return DefaultGenerator.NewV6()
}
// NewV7 returns a k-sortable UUID based on the current UNIX epoch, with the
// ability to configure the timestamp's precision from millisecond all the way
// to nanosecond. The additional precision is supported by reducing the amount
// of pseudorandom data that makes up the rest of the UUID.
//
// If an unknown Precision argument is passed to this method it will panic. As
// such it's strongly encouraged to use the package-provided constants for this
// value.
//
// This is implemented based on revision 02 of the Peabody UUID draft, and may
// be subject to change pending further revisions. Until the final specification
// revision is finished, changes required to implement updates to the spec will
// not be considered a breaking change. They will happen as a minor version
// releases until the spec is final.
func NewV7(p Precision) (UUID, error) {
return DefaultGenerator.NewV7(p)
}
// Generator provides an interface for generating UUIDs.
type Generator interface {
NewV1() (UUID, error)
NewV3(ns UUID, name string) UUID
NewV4() (UUID, error)
NewV5(ns UUID, name string) UUID
NewV6() (UUID, error)
NewV7(Precision) (UUID, error)
}
// Gen is a reference UUID generator based on the specifications laid out in
// RFC-4122 and DCE 1.1: Authentication and Security Services. This type
// satisfies the Generator interface as defined in this package.
//
// For consumers who are generating V1 UUIDs, but don't want to expose the MAC
// address of the node generating the UUIDs, the NewGenWithHWAF() function has been
// provided as a convenience. See the function's documentation for more info.
//
// The authors of this package do not feel that the majority of users will need
// to obfuscate their MAC address, and so we recommend using NewGen() to create
// a new generator.
type Gen struct {
clockSequenceOnce sync.Once
hardwareAddrOnce sync.Once
storageMutex sync.Mutex
rand io.Reader
epochFunc epochFunc
hwAddrFunc HWAddrFunc
lastTime uint64
clockSequence uint16
hardwareAddr [6]byte
v7LastTime uint64
v7LastSubsec uint64
v7ClockSequence uint16
}
// interface check -- build will fail if *Gen doesn't satisfy Generator
var _ Generator = (*Gen)(nil)
// NewGen returns a new instance of Gen with some default values set. Most
// people should use this.
func NewGen() *Gen {
return NewGenWithHWAF(defaultHWAddrFunc)
}
// NewGenWithHWAF builds a new UUID generator with the HWAddrFunc provided. Most
// consumers should use NewGen() instead.
//
// This is used so that consumers can generate their own MAC addresses, for use
// in the generated UUIDs, if there is some concern about exposing the physical
// address of the machine generating the UUID.
//
// The Gen generator will only invoke the HWAddrFunc once, and cache that MAC
// address for all the future UUIDs generated by it. If you'd like to switch the
// MAC address being used, you'll need to create a new generator using this
// function.
func NewGenWithHWAF(hwaf HWAddrFunc) *Gen {
return &Gen{
epochFunc: time.Now,
hwAddrFunc: hwaf,
rand: rand.Reader,
}
}
// NewV1 returns a UUID based on the current timestamp and MAC address.
func (g *Gen) NewV1() (UUID, error) {
u := UUID{}
timeNow, clockSeq, err := g.getClockSequence()
if err != nil {
return Nil, err
}
binary.BigEndian.PutUint32(u[0:], uint32(timeNow))
binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>32))
binary.BigEndian.PutUint16(u[6:], uint16(timeNow>>48))
binary.BigEndian.PutUint16(u[8:], clockSeq)
hardwareAddr, err := g.getHardwareAddr()
if err != nil {
return Nil, err
}
copy(u[10:], hardwareAddr)
u.SetVersion(V1)
u.SetVariant(VariantRFC4122)
return u, nil
}
// NewV3 returns a UUID based on the MD5 hash of the namespace UUID and name.
func (g *Gen) NewV3(ns UUID, name string) UUID {
u := newFromHash(md5.New(), ns, name)
u.SetVersion(V3)
u.SetVariant(VariantRFC4122)
return u
}
// NewV4 returns a randomly generated UUID.
func (g *Gen) NewV4() (UUID, error) {
u := UUID{}
if _, err := io.ReadFull(g.rand, u[:]); err != nil {
return Nil, err
}
u.SetVersion(V4)
u.SetVariant(VariantRFC4122)
return u, nil
}
// NewV5 returns a UUID based on SHA-1 hash of the namespace UUID and name.
func (g *Gen) NewV5(ns UUID, name string) UUID {
u := newFromHash(sha1.New(), ns, name)
u.SetVersion(V5)
u.SetVariant(VariantRFC4122)
return u
}
// NewV6 returns a k-sortable UUID based on a timestamp and 48 bits of
// pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit
// order being adjusted to allow the UUID to be k-sortable.
//
// This is implemented based on revision 02 of the Peabody UUID draft, and may
// be subject to change pending further revisions. Until the final specification
// revision is finished, changes required to implement updates to the spec will
// not be considered a breaking change. They will happen as a minor version
// releases until the spec is final.
func (g *Gen) NewV6() (UUID, error) {
var u UUID
if _, err := io.ReadFull(g.rand, u[10:]); err != nil {
return Nil, err
}
timeNow, clockSeq, err := g.getClockSequence()
if err != nil {
return Nil, err
}
binary.BigEndian.PutUint32(u[0:], uint32(timeNow>>28)) // set time_high
binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>12)) // set time_mid
binary.BigEndian.PutUint16(u[6:], uint16(timeNow&0xfff)) // set time_low (minus four version bits)
binary.BigEndian.PutUint16(u[8:], clockSeq&0x3fff) // set clk_seq_hi_res (minus two variant bits)
u.SetVersion(V6)
u.SetVariant(VariantRFC4122)
return u, nil
}
// getClockSequence returns the epoch and clock sequence for V1 and V6 UUIDs.
func (g *Gen) getClockSequence() (uint64, uint16, error) {
var err error
g.clockSequenceOnce.Do(func() {
buf := make([]byte, 2)
if _, err = io.ReadFull(g.rand, buf); err != nil {
return
}
g.clockSequence = binary.BigEndian.Uint16(buf)
})
if err != nil {
return 0, 0, err
}
g.storageMutex.Lock()
defer g.storageMutex.Unlock()
timeNow := g.getEpoch()
// Clock didn't change since last UUID generation.
// Should increase clock sequence.
if timeNow <= g.lastTime {
g.clockSequence++
}
g.lastTime = timeNow
return timeNow, g.clockSequence, nil
}
// Precision is used to configure the V7 generator, to specify how precise the
// timestamp within the UUID should be.
type Precision byte
const (
NanosecondPrecision Precision = iota
MicrosecondPrecision
MillisecondPrecision
)
func (p Precision) String() string {
switch p {
case NanosecondPrecision:
return "nanosecond"
case MicrosecondPrecision:
return "microsecond"
case MillisecondPrecision:
return "millisecond"
default:
return "unknown"
}
}
// Duration returns the time.Duration for a specific precision. If the Precision
// value is not known, this returns 0.
func (p Precision) Duration() time.Duration {
switch p {
case NanosecondPrecision:
return time.Nanosecond
case MicrosecondPrecision:
return time.Microsecond
case MillisecondPrecision:
return time.Millisecond
default:
return 0
}
}
// NewV7 returns a k-sortable UUID based on the current UNIX epoch, with the
// ability to configure the timestamp's precision from millisecond all the way
// to nanosecond. The additional precision is supported by reducing the amount
// of pseudorandom data that makes up the rest of the UUID.
//
// If an unknown Precision argument is passed to this method it will panic. As
// such it's strongly encouraged to use the package-provided constants for this
// value.
//
// This is implemented based on revision 02 of the Peabody UUID draft, and may
// be subject to change pending further revisions. Until the final specification
// revision is finished, changes required to implement updates to the spec will
// not be considered a breaking change. They will happen as a minor version
// releases until the spec is final.
func (g *Gen) NewV7(p Precision) (UUID, error) {
var u UUID
var err error
switch p {
case NanosecondPrecision:
u, err = g.newV7Nano()
case MicrosecondPrecision:
u, err = g.newV7Micro()
case MillisecondPrecision:
u, err = g.newV7Milli()
default:
panic(fmt.Sprintf("unknown precision value %d", p))
}
if err != nil {
return Nil, err
}
u.SetVersion(V7)
u.SetVariant(VariantRFC4122)
return u, nil
}
func (g *Gen) newV7Milli() (UUID, error) {
var u UUID
if _, err := io.ReadFull(g.rand, u[8:]); err != nil {
return Nil, err
}
sec, nano, seq, err := g.getV7ClockSequence(MillisecondPrecision)
if err != nil {
return Nil, err
}
msec := (nano / 1000000) & 0xfff
d := (sec << 28) // set unixts field
d |= (msec << 16) // set msec field
d |= (uint64(seq) & 0xfff) // set seq field
binary.BigEndian.PutUint64(u[:], d)
return u, nil
}
func (g *Gen) newV7Micro() (UUID, error) {
var u UUID
if _, err := io.ReadFull(g.rand, u[10:]); err != nil {
return Nil, err
}
sec, nano, seq, err := g.getV7ClockSequence(MicrosecondPrecision)
if err != nil {
return Nil, err
}
usec := nano / 1000
usech := (usec << 4) & 0xfff0000
usecl := usec & 0xfff
d := (sec << 28) // set unixts field
d |= usech | usecl // set usec fields
binary.BigEndian.PutUint64(u[:], d)
binary.BigEndian.PutUint16(u[8:], seq)
return u, nil
}
func (g *Gen) newV7Nano() (UUID, error) {
var u UUID
if _, err := io.ReadFull(g.rand, u[11:]); err != nil {
return Nil, err
}
sec, nano, seq, err := g.getV7ClockSequence(NanosecondPrecision)
if err != nil {
return Nil, err
}
nano &= 0x3fffffffff
nanoh := nano >> 26
nanom := (nano >> 14) & 0xfff
nanol := uint16(nano & 0x3fff)
d := (sec << 28) // set unixts field
d |= (nanoh << 16) | nanom // set nsec high and med fields
binary.BigEndian.PutUint64(u[:], d)
binary.BigEndian.PutUint16(u[8:], nanol) // set nsec low field
u[10] = byte(seq) // set seq field
return u, nil
}
const (
maxSeq14 = (1 << 14) - 1
maxSeq12 = (1 << 12) - 1
maxSeq8 = (1 << 8) - 1
)
// getV7ClockSequence returns the unix epoch, nanoseconds of current second, and
// the sequence for V7 UUIDs.
func (g *Gen) getV7ClockSequence(p Precision) (epoch uint64, nano uint64, seq uint16, err error) {
g.storageMutex.Lock()
defer g.storageMutex.Unlock()
tn := g.epochFunc()
unix := uint64(tn.Unix())
nsec := uint64(tn.Nanosecond())
// V7 UUIDs have more precise requirements around how the clock sequence
// value is generated and used. Specifically they require that the sequence
// be zero, unless we've already generated a UUID within this unit of time
// (millisecond, microsecond, or nanosecond) at which point you should
// increment the sequence. Likewise if time has warped backwards for some reason (NTP
// adjustment?), we also increment the clock sequence to reduce the risk of a
// collision.
switch {
case unix < g.v7LastTime:
g.v7ClockSequence++
case unix > g.v7LastTime:
g.v7ClockSequence = 0
case unix == g.v7LastTime:
switch p {
case NanosecondPrecision:
if nsec <= g.v7LastSubsec {
if g.v7ClockSequence >= maxSeq8 {
return 0, 0, 0, errors.New("generating nanosecond precision UUIDv7s too fast: internal clock sequence would roll over")
}
g.v7ClockSequence++
} else {
g.v7ClockSequence = 0
}
case MicrosecondPrecision:
if nsec/1000 <= g.v7LastSubsec/1000 {
if g.v7ClockSequence >= maxSeq14 {
return 0, 0, 0, errors.New("generating microsecond precision UUIDv7s too fast: internal clock sequence would roll over")
}
g.v7ClockSequence++
} else {
g.v7ClockSequence = 0
}
case MillisecondPrecision:
if nsec/1000000 <= g.v7LastSubsec/1000000 {
if g.v7ClockSequence >= maxSeq12 {
return 0, 0, 0, errors.New("generating millisecond precision UUIDv7s too fast: internal clock sequence would roll over")
}
g.v7ClockSequence++
} else {
g.v7ClockSequence = 0
}
default:
panic(fmt.Sprintf("unknown precision value %d", p))
}
}
g.v7LastTime = unix
g.v7LastSubsec = nsec
return unix, nsec, g.v7ClockSequence, nil
}
// Returns the hardware address.
func (g *Gen) getHardwareAddr() ([]byte, error) {
var err error
g.hardwareAddrOnce.Do(func() {
var hwAddr net.HardwareAddr
if hwAddr, err = g.hwAddrFunc(); err == nil {
copy(g.hardwareAddr[:], hwAddr)
return
}
// Initialize hardwareAddr randomly in case
// of real network interfaces absence.
if _, err = io.ReadFull(g.rand, g.hardwareAddr[:]); err != nil {
return
}
// Set multicast bit as recommended by RFC-4122
g.hardwareAddr[0] |= 0x01
})
if err != nil {
return []byte{}, err
}
return g.hardwareAddr[:], nil
}
// Returns the difference between UUID epoch (October 15, 1582)
// and current time in 100-nanosecond intervals.
func (g *Gen) getEpoch() uint64 {
return epochStart + uint64(g.epochFunc().UnixNano()/100)
}
// Returns the UUID based on the hashing of the namespace UUID and name.
func newFromHash(h hash.Hash, ns UUID, name string) UUID {
u := UUID{}
h.Write(ns[:])
h.Write([]byte(name))
copy(u[:], h.Sum(nil))
return u
}
// Returns the hardware address.
func defaultHWAddrFunc() (net.HardwareAddr, error) {
ifaces, err := net.Interfaces()
if err != nil {
return []byte{}, err
}
for _, iface := range ifaces {
if len(iface.HardwareAddr) >= 6 {
return iface.HardwareAddr, nil
}
}
return []byte{}, fmt.Errorf("uuid: no HW address found")
}