// Copyright (C) 2013-2018 by Maxim Bublis // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. package uuid import ( "crypto/md5" "crypto/rand" "crypto/sha1" "encoding/binary" "errors" "fmt" "hash" "io" "net" "sync" "time" ) // Difference in 100-nanosecond intervals between // UUID epoch (October 15, 1582) and Unix epoch (January 1, 1970). const epochStart = 122192928000000000 type epochFunc func() time.Time // HWAddrFunc is the function type used to provide hardware (MAC) addresses. type HWAddrFunc func() (net.HardwareAddr, error) // DefaultGenerator is the default UUID Generator used by this package. var DefaultGenerator Generator = NewGen() // NewV1 returns a UUID based on the current timestamp and MAC address. func NewV1() (UUID, error) { return DefaultGenerator.NewV1() } // NewV3 returns a UUID based on the MD5 hash of the namespace UUID and name. func NewV3(ns UUID, name string) UUID { return DefaultGenerator.NewV3(ns, name) } // NewV4 returns a randomly generated UUID. func NewV4() (UUID, error) { return DefaultGenerator.NewV4() } // NewV5 returns a UUID based on SHA-1 hash of the namespace UUID and name. func NewV5(ns UUID, name string) UUID { return DefaultGenerator.NewV5(ns, name) } // NewV6 returns a k-sortable UUID based on a timestamp and 48 bits of // pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit // order being adjusted to allow the UUID to be k-sortable. // // This is implemented based on revision 02 of the Peabody UUID draft, and may // be subject to change pending further revisions. Until the final specification // revision is finished, changes required to implement updates to the spec will // not be considered a breaking change. They will happen as a minor version // releases until the spec is final. func NewV6() (UUID, error) { return DefaultGenerator.NewV6() } // NewV7 returns a k-sortable UUID based on the current UNIX epoch, with the // ability to configure the timestamp's precision from millisecond all the way // to nanosecond. The additional precision is supported by reducing the amount // of pseudorandom data that makes up the rest of the UUID. // // If an unknown Precision argument is passed to this method it will panic. As // such it's strongly encouraged to use the package-provided constants for this // value. // // This is implemented based on revision 02 of the Peabody UUID draft, and may // be subject to change pending further revisions. Until the final specification // revision is finished, changes required to implement updates to the spec will // not be considered a breaking change. They will happen as a minor version // releases until the spec is final. func NewV7(p Precision) (UUID, error) { return DefaultGenerator.NewV7(p) } // Generator provides an interface for generating UUIDs. type Generator interface { NewV1() (UUID, error) NewV3(ns UUID, name string) UUID NewV4() (UUID, error) NewV5(ns UUID, name string) UUID NewV6() (UUID, error) NewV7(Precision) (UUID, error) } // Gen is a reference UUID generator based on the specifications laid out in // RFC-4122 and DCE 1.1: Authentication and Security Services. This type // satisfies the Generator interface as defined in this package. // // For consumers who are generating V1 UUIDs, but don't want to expose the MAC // address of the node generating the UUIDs, the NewGenWithHWAF() function has been // provided as a convenience. See the function's documentation for more info. // // The authors of this package do not feel that the majority of users will need // to obfuscate their MAC address, and so we recommend using NewGen() to create // a new generator. type Gen struct { clockSequenceOnce sync.Once hardwareAddrOnce sync.Once storageMutex sync.Mutex rand io.Reader epochFunc epochFunc hwAddrFunc HWAddrFunc lastTime uint64 clockSequence uint16 hardwareAddr [6]byte v7LastTime uint64 v7LastSubsec uint64 v7ClockSequence uint16 } // interface check -- build will fail if *Gen doesn't satisfy Generator var _ Generator = (*Gen)(nil) // NewGen returns a new instance of Gen with some default values set. Most // people should use this. func NewGen() *Gen { return NewGenWithHWAF(defaultHWAddrFunc) } // NewGenWithHWAF builds a new UUID generator with the HWAddrFunc provided. Most // consumers should use NewGen() instead. // // This is used so that consumers can generate their own MAC addresses, for use // in the generated UUIDs, if there is some concern about exposing the physical // address of the machine generating the UUID. // // The Gen generator will only invoke the HWAddrFunc once, and cache that MAC // address for all the future UUIDs generated by it. If you'd like to switch the // MAC address being used, you'll need to create a new generator using this // function. func NewGenWithHWAF(hwaf HWAddrFunc) *Gen { return &Gen{ epochFunc: time.Now, hwAddrFunc: hwaf, rand: rand.Reader, } } // NewV1 returns a UUID based on the current timestamp and MAC address. func (g *Gen) NewV1() (UUID, error) { u := UUID{} timeNow, clockSeq, err := g.getClockSequence() if err != nil { return Nil, err } binary.BigEndian.PutUint32(u[0:], uint32(timeNow)) binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>32)) binary.BigEndian.PutUint16(u[6:], uint16(timeNow>>48)) binary.BigEndian.PutUint16(u[8:], clockSeq) hardwareAddr, err := g.getHardwareAddr() if err != nil { return Nil, err } copy(u[10:], hardwareAddr) u.SetVersion(V1) u.SetVariant(VariantRFC4122) return u, nil } // NewV3 returns a UUID based on the MD5 hash of the namespace UUID and name. func (g *Gen) NewV3(ns UUID, name string) UUID { u := newFromHash(md5.New(), ns, name) u.SetVersion(V3) u.SetVariant(VariantRFC4122) return u } // NewV4 returns a randomly generated UUID. func (g *Gen) NewV4() (UUID, error) { u := UUID{} if _, err := io.ReadFull(g.rand, u[:]); err != nil { return Nil, err } u.SetVersion(V4) u.SetVariant(VariantRFC4122) return u, nil } // NewV5 returns a UUID based on SHA-1 hash of the namespace UUID and name. func (g *Gen) NewV5(ns UUID, name string) UUID { u := newFromHash(sha1.New(), ns, name) u.SetVersion(V5) u.SetVariant(VariantRFC4122) return u } // NewV6 returns a k-sortable UUID based on a timestamp and 48 bits of // pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit // order being adjusted to allow the UUID to be k-sortable. // // This is implemented based on revision 02 of the Peabody UUID draft, and may // be subject to change pending further revisions. Until the final specification // revision is finished, changes required to implement updates to the spec will // not be considered a breaking change. They will happen as a minor version // releases until the spec is final. func (g *Gen) NewV6() (UUID, error) { var u UUID if _, err := io.ReadFull(g.rand, u[10:]); err != nil { return Nil, err } timeNow, clockSeq, err := g.getClockSequence() if err != nil { return Nil, err } binary.BigEndian.PutUint32(u[0:], uint32(timeNow>>28)) // set time_high binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>12)) // set time_mid binary.BigEndian.PutUint16(u[6:], uint16(timeNow&0xfff)) // set time_low (minus four version bits) binary.BigEndian.PutUint16(u[8:], clockSeq&0x3fff) // set clk_seq_hi_res (minus two variant bits) u.SetVersion(V6) u.SetVariant(VariantRFC4122) return u, nil } // getClockSequence returns the epoch and clock sequence for V1 and V6 UUIDs. func (g *Gen) getClockSequence() (uint64, uint16, error) { var err error g.clockSequenceOnce.Do(func() { buf := make([]byte, 2) if _, err = io.ReadFull(g.rand, buf); err != nil { return } g.clockSequence = binary.BigEndian.Uint16(buf) }) if err != nil { return 0, 0, err } g.storageMutex.Lock() defer g.storageMutex.Unlock() timeNow := g.getEpoch() // Clock didn't change since last UUID generation. // Should increase clock sequence. if timeNow <= g.lastTime { g.clockSequence++ } g.lastTime = timeNow return timeNow, g.clockSequence, nil } // Precision is used to configure the V7 generator, to specify how precise the // timestamp within the UUID should be. type Precision byte const ( NanosecondPrecision Precision = iota MicrosecondPrecision MillisecondPrecision ) func (p Precision) String() string { switch p { case NanosecondPrecision: return "nanosecond" case MicrosecondPrecision: return "microsecond" case MillisecondPrecision: return "millisecond" default: return "unknown" } } // Duration returns the time.Duration for a specific precision. If the Precision // value is not known, this returns 0. func (p Precision) Duration() time.Duration { switch p { case NanosecondPrecision: return time.Nanosecond case MicrosecondPrecision: return time.Microsecond case MillisecondPrecision: return time.Millisecond default: return 0 } } // NewV7 returns a k-sortable UUID based on the current UNIX epoch, with the // ability to configure the timestamp's precision from millisecond all the way // to nanosecond. The additional precision is supported by reducing the amount // of pseudorandom data that makes up the rest of the UUID. // // If an unknown Precision argument is passed to this method it will panic. As // such it's strongly encouraged to use the package-provided constants for this // value. // // This is implemented based on revision 02 of the Peabody UUID draft, and may // be subject to change pending further revisions. Until the final specification // revision is finished, changes required to implement updates to the spec will // not be considered a breaking change. They will happen as a minor version // releases until the spec is final. func (g *Gen) NewV7(p Precision) (UUID, error) { var u UUID var err error switch p { case NanosecondPrecision: u, err = g.newV7Nano() case MicrosecondPrecision: u, err = g.newV7Micro() case MillisecondPrecision: u, err = g.newV7Milli() default: panic(fmt.Sprintf("unknown precision value %d", p)) } if err != nil { return Nil, err } u.SetVersion(V7) u.SetVariant(VariantRFC4122) return u, nil } func (g *Gen) newV7Milli() (UUID, error) { var u UUID if _, err := io.ReadFull(g.rand, u[8:]); err != nil { return Nil, err } sec, nano, seq, err := g.getV7ClockSequence(MillisecondPrecision) if err != nil { return Nil, err } msec := (nano / 1000000) & 0xfff d := (sec << 28) // set unixts field d |= (msec << 16) // set msec field d |= (uint64(seq) & 0xfff) // set seq field binary.BigEndian.PutUint64(u[:], d) return u, nil } func (g *Gen) newV7Micro() (UUID, error) { var u UUID if _, err := io.ReadFull(g.rand, u[10:]); err != nil { return Nil, err } sec, nano, seq, err := g.getV7ClockSequence(MicrosecondPrecision) if err != nil { return Nil, err } usec := nano / 1000 usech := (usec << 4) & 0xfff0000 usecl := usec & 0xfff d := (sec << 28) // set unixts field d |= usech | usecl // set usec fields binary.BigEndian.PutUint64(u[:], d) binary.BigEndian.PutUint16(u[8:], seq) return u, nil } func (g *Gen) newV7Nano() (UUID, error) { var u UUID if _, err := io.ReadFull(g.rand, u[11:]); err != nil { return Nil, err } sec, nano, seq, err := g.getV7ClockSequence(NanosecondPrecision) if err != nil { return Nil, err } nano &= 0x3fffffffff nanoh := nano >> 26 nanom := (nano >> 14) & 0xfff nanol := uint16(nano & 0x3fff) d := (sec << 28) // set unixts field d |= (nanoh << 16) | nanom // set nsec high and med fields binary.BigEndian.PutUint64(u[:], d) binary.BigEndian.PutUint16(u[8:], nanol) // set nsec low field u[10] = byte(seq) // set seq field return u, nil } const ( maxSeq14 = (1 << 14) - 1 maxSeq12 = (1 << 12) - 1 maxSeq8 = (1 << 8) - 1 ) // getV7ClockSequence returns the unix epoch, nanoseconds of current second, and // the sequence for V7 UUIDs. func (g *Gen) getV7ClockSequence(p Precision) (epoch uint64, nano uint64, seq uint16, err error) { g.storageMutex.Lock() defer g.storageMutex.Unlock() tn := g.epochFunc() unix := uint64(tn.Unix()) nsec := uint64(tn.Nanosecond()) // V7 UUIDs have more precise requirements around how the clock sequence // value is generated and used. Specifically they require that the sequence // be zero, unless we've already generated a UUID within this unit of time // (millisecond, microsecond, or nanosecond) at which point you should // increment the sequence. Likewise if time has warped backwards for some reason (NTP // adjustment?), we also increment the clock sequence to reduce the risk of a // collision. switch { case unix < g.v7LastTime: g.v7ClockSequence++ case unix > g.v7LastTime: g.v7ClockSequence = 0 case unix == g.v7LastTime: switch p { case NanosecondPrecision: if nsec <= g.v7LastSubsec { if g.v7ClockSequence >= maxSeq8 { return 0, 0, 0, errors.New("generating nanosecond precision UUIDv7s too fast: internal clock sequence would roll over") } g.v7ClockSequence++ } else { g.v7ClockSequence = 0 } case MicrosecondPrecision: if nsec/1000 <= g.v7LastSubsec/1000 { if g.v7ClockSequence >= maxSeq14 { return 0, 0, 0, errors.New("generating microsecond precision UUIDv7s too fast: internal clock sequence would roll over") } g.v7ClockSequence++ } else { g.v7ClockSequence = 0 } case MillisecondPrecision: if nsec/1000000 <= g.v7LastSubsec/1000000 { if g.v7ClockSequence >= maxSeq12 { return 0, 0, 0, errors.New("generating millisecond precision UUIDv7s too fast: internal clock sequence would roll over") } g.v7ClockSequence++ } else { g.v7ClockSequence = 0 } default: panic(fmt.Sprintf("unknown precision value %d", p)) } } g.v7LastTime = unix g.v7LastSubsec = nsec return unix, nsec, g.v7ClockSequence, nil } // Returns the hardware address. func (g *Gen) getHardwareAddr() ([]byte, error) { var err error g.hardwareAddrOnce.Do(func() { var hwAddr net.HardwareAddr if hwAddr, err = g.hwAddrFunc(); err == nil { copy(g.hardwareAddr[:], hwAddr) return } // Initialize hardwareAddr randomly in case // of real network interfaces absence. if _, err = io.ReadFull(g.rand, g.hardwareAddr[:]); err != nil { return } // Set multicast bit as recommended by RFC-4122 g.hardwareAddr[0] |= 0x01 }) if err != nil { return []byte{}, err } return g.hardwareAddr[:], nil } // Returns the difference between UUID epoch (October 15, 1582) // and current time in 100-nanosecond intervals. func (g *Gen) getEpoch() uint64 { return epochStart + uint64(g.epochFunc().UnixNano()/100) } // Returns the UUID based on the hashing of the namespace UUID and name. func newFromHash(h hash.Hash, ns UUID, name string) UUID { u := UUID{} h.Write(ns[:]) h.Write([]byte(name)) copy(u[:], h.Sum(nil)) return u } // Returns the hardware address. func defaultHWAddrFunc() (net.HardwareAddr, error) { ifaces, err := net.Interfaces() if err != nil { return []byte{}, err } for _, iface := range ifaces { if len(iface.HardwareAddr) >= 6 { return iface.HardwareAddr, nil } } return []byte{}, fmt.Errorf("uuid: no HW address found") }