829 lines
21 KiB
Go
829 lines
21 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package flate implements the DEFLATE compressed data format, described in
|
|
// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file
|
|
// formats.
|
|
package flate
|
|
|
|
import (
|
|
"bufio"
|
|
"compress/flate"
|
|
"fmt"
|
|
"io"
|
|
"math/bits"
|
|
"sync"
|
|
)
|
|
|
|
const (
|
|
maxCodeLen = 16 // max length of Huffman code
|
|
maxCodeLenMask = 15 // mask for max length of Huffman code
|
|
// The next three numbers come from the RFC section 3.2.7, with the
|
|
// additional proviso in section 3.2.5 which implies that distance codes
|
|
// 30 and 31 should never occur in compressed data.
|
|
maxNumLit = 286
|
|
maxNumDist = 30
|
|
numCodes = 19 // number of codes in Huffman meta-code
|
|
|
|
debugDecode = false
|
|
)
|
|
|
|
// Value of length - 3 and extra bits.
|
|
type lengthExtra struct {
|
|
length, extra uint8
|
|
}
|
|
|
|
var decCodeToLen = [32]lengthExtra{{length: 0x0, extra: 0x0}, {length: 0x1, extra: 0x0}, {length: 0x2, extra: 0x0}, {length: 0x3, extra: 0x0}, {length: 0x4, extra: 0x0}, {length: 0x5, extra: 0x0}, {length: 0x6, extra: 0x0}, {length: 0x7, extra: 0x0}, {length: 0x8, extra: 0x1}, {length: 0xa, extra: 0x1}, {length: 0xc, extra: 0x1}, {length: 0xe, extra: 0x1}, {length: 0x10, extra: 0x2}, {length: 0x14, extra: 0x2}, {length: 0x18, extra: 0x2}, {length: 0x1c, extra: 0x2}, {length: 0x20, extra: 0x3}, {length: 0x28, extra: 0x3}, {length: 0x30, extra: 0x3}, {length: 0x38, extra: 0x3}, {length: 0x40, extra: 0x4}, {length: 0x50, extra: 0x4}, {length: 0x60, extra: 0x4}, {length: 0x70, extra: 0x4}, {length: 0x80, extra: 0x5}, {length: 0xa0, extra: 0x5}, {length: 0xc0, extra: 0x5}, {length: 0xe0, extra: 0x5}, {length: 0xff, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}}
|
|
|
|
var bitMask32 = [32]uint32{
|
|
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF,
|
|
0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF,
|
|
0x1ffff, 0x3ffff, 0x7FFFF, 0xfFFFF, 0x1fFFFF, 0x3fFFFF, 0x7fFFFF, 0xffFFFF,
|
|
0x1ffFFFF, 0x3ffFFFF, 0x7ffFFFF, 0xfffFFFF, 0x1fffFFFF, 0x3fffFFFF, 0x7fffFFFF,
|
|
} // up to 32 bits
|
|
|
|
// Initialize the fixedHuffmanDecoder only once upon first use.
|
|
var fixedOnce sync.Once
|
|
var fixedHuffmanDecoder huffmanDecoder
|
|
|
|
// A CorruptInputError reports the presence of corrupt input at a given offset.
|
|
type CorruptInputError = flate.CorruptInputError
|
|
|
|
// An InternalError reports an error in the flate code itself.
|
|
type InternalError string
|
|
|
|
func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
|
|
|
|
// A ReadError reports an error encountered while reading input.
|
|
//
|
|
// Deprecated: No longer returned.
|
|
type ReadError = flate.ReadError
|
|
|
|
// A WriteError reports an error encountered while writing output.
|
|
//
|
|
// Deprecated: No longer returned.
|
|
type WriteError = flate.WriteError
|
|
|
|
// Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
|
|
// to switch to a new underlying Reader. This permits reusing a ReadCloser
|
|
// instead of allocating a new one.
|
|
type Resetter interface {
|
|
// Reset discards any buffered data and resets the Resetter as if it was
|
|
// newly initialized with the given reader.
|
|
Reset(r io.Reader, dict []byte) error
|
|
}
|
|
|
|
// The data structure for decoding Huffman tables is based on that of
|
|
// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
|
|
// For codes smaller than the table width, there are multiple entries
|
|
// (each combination of trailing bits has the same value). For codes
|
|
// larger than the table width, the table contains a link to an overflow
|
|
// table. The width of each entry in the link table is the maximum code
|
|
// size minus the chunk width.
|
|
//
|
|
// Note that you can do a lookup in the table even without all bits
|
|
// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
|
|
// have the property that shorter codes come before longer ones, the
|
|
// bit length estimate in the result is a lower bound on the actual
|
|
// number of bits.
|
|
//
|
|
// See the following:
|
|
// http://www.gzip.org/algorithm.txt
|
|
|
|
// chunk & 15 is number of bits
|
|
// chunk >> 4 is value, including table link
|
|
|
|
const (
|
|
huffmanChunkBits = 9
|
|
huffmanNumChunks = 1 << huffmanChunkBits
|
|
huffmanCountMask = 15
|
|
huffmanValueShift = 4
|
|
)
|
|
|
|
type huffmanDecoder struct {
|
|
maxRead int // the maximum number of bits we can read and not overread
|
|
chunks *[huffmanNumChunks]uint16 // chunks as described above
|
|
links [][]uint16 // overflow links
|
|
linkMask uint32 // mask the width of the link table
|
|
}
|
|
|
|
// Initialize Huffman decoding tables from array of code lengths.
|
|
// Following this function, h is guaranteed to be initialized into a complete
|
|
// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
|
|
// degenerate case where the tree has only a single symbol with length 1. Empty
|
|
// trees are permitted.
|
|
func (h *huffmanDecoder) init(lengths []int) bool {
|
|
// Sanity enables additional runtime tests during Huffman
|
|
// table construction. It's intended to be used during
|
|
// development to supplement the currently ad-hoc unit tests.
|
|
const sanity = false
|
|
|
|
if h.chunks == nil {
|
|
h.chunks = new([huffmanNumChunks]uint16)
|
|
}
|
|
|
|
if h.maxRead != 0 {
|
|
*h = huffmanDecoder{chunks: h.chunks, links: h.links}
|
|
}
|
|
|
|
// Count number of codes of each length,
|
|
// compute maxRead and max length.
|
|
var count [maxCodeLen]int
|
|
var min, max int
|
|
for _, n := range lengths {
|
|
if n == 0 {
|
|
continue
|
|
}
|
|
if min == 0 || n < min {
|
|
min = n
|
|
}
|
|
if n > max {
|
|
max = n
|
|
}
|
|
count[n&maxCodeLenMask]++
|
|
}
|
|
|
|
// Empty tree. The decompressor.huffSym function will fail later if the tree
|
|
// is used. Technically, an empty tree is only valid for the HDIST tree and
|
|
// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
|
|
// is guaranteed to fail since it will attempt to use the tree to decode the
|
|
// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
|
|
// guaranteed to fail later since the compressed data section must be
|
|
// composed of at least one symbol (the end-of-block marker).
|
|
if max == 0 {
|
|
return true
|
|
}
|
|
|
|
code := 0
|
|
var nextcode [maxCodeLen]int
|
|
for i := min; i <= max; i++ {
|
|
code <<= 1
|
|
nextcode[i&maxCodeLenMask] = code
|
|
code += count[i&maxCodeLenMask]
|
|
}
|
|
|
|
// Check that the coding is complete (i.e., that we've
|
|
// assigned all 2-to-the-max possible bit sequences).
|
|
// Exception: To be compatible with zlib, we also need to
|
|
// accept degenerate single-code codings. See also
|
|
// TestDegenerateHuffmanCoding.
|
|
if code != 1<<uint(max) && !(code == 1 && max == 1) {
|
|
if debugDecode {
|
|
fmt.Println("coding failed, code, max:", code, max, code == 1<<uint(max), code == 1 && max == 1, "(one should be true)")
|
|
}
|
|
return false
|
|
}
|
|
|
|
h.maxRead = min
|
|
|
|
chunks := h.chunks[:]
|
|
for i := range chunks {
|
|
chunks[i] = 0
|
|
}
|
|
|
|
if max > huffmanChunkBits {
|
|
numLinks := 1 << (uint(max) - huffmanChunkBits)
|
|
h.linkMask = uint32(numLinks - 1)
|
|
|
|
// create link tables
|
|
link := nextcode[huffmanChunkBits+1] >> 1
|
|
if cap(h.links) < huffmanNumChunks-link {
|
|
h.links = make([][]uint16, huffmanNumChunks-link)
|
|
} else {
|
|
h.links = h.links[:huffmanNumChunks-link]
|
|
}
|
|
for j := uint(link); j < huffmanNumChunks; j++ {
|
|
reverse := int(bits.Reverse16(uint16(j)))
|
|
reverse >>= uint(16 - huffmanChunkBits)
|
|
off := j - uint(link)
|
|
if sanity && h.chunks[reverse] != 0 {
|
|
panic("impossible: overwriting existing chunk")
|
|
}
|
|
h.chunks[reverse] = uint16(off<<huffmanValueShift | (huffmanChunkBits + 1))
|
|
if cap(h.links[off]) < numLinks {
|
|
h.links[off] = make([]uint16, numLinks)
|
|
} else {
|
|
h.links[off] = h.links[off][:numLinks]
|
|
}
|
|
}
|
|
} else {
|
|
h.links = h.links[:0]
|
|
}
|
|
|
|
for i, n := range lengths {
|
|
if n == 0 {
|
|
continue
|
|
}
|
|
code := nextcode[n]
|
|
nextcode[n]++
|
|
chunk := uint16(i<<huffmanValueShift | n)
|
|
reverse := int(bits.Reverse16(uint16(code)))
|
|
reverse >>= uint(16 - n)
|
|
if n <= huffmanChunkBits {
|
|
for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
|
|
// We should never need to overwrite
|
|
// an existing chunk. Also, 0 is
|
|
// never a valid chunk, because the
|
|
// lower 4 "count" bits should be
|
|
// between 1 and 15.
|
|
if sanity && h.chunks[off] != 0 {
|
|
panic("impossible: overwriting existing chunk")
|
|
}
|
|
h.chunks[off] = chunk
|
|
}
|
|
} else {
|
|
j := reverse & (huffmanNumChunks - 1)
|
|
if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
|
|
// Longer codes should have been
|
|
// associated with a link table above.
|
|
panic("impossible: not an indirect chunk")
|
|
}
|
|
value := h.chunks[j] >> huffmanValueShift
|
|
linktab := h.links[value]
|
|
reverse >>= huffmanChunkBits
|
|
for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
|
|
if sanity && linktab[off] != 0 {
|
|
panic("impossible: overwriting existing chunk")
|
|
}
|
|
linktab[off] = chunk
|
|
}
|
|
}
|
|
}
|
|
|
|
if sanity {
|
|
// Above we've sanity checked that we never overwrote
|
|
// an existing entry. Here we additionally check that
|
|
// we filled the tables completely.
|
|
for i, chunk := range h.chunks {
|
|
if chunk == 0 {
|
|
// As an exception, in the degenerate
|
|
// single-code case, we allow odd
|
|
// chunks to be missing.
|
|
if code == 1 && i%2 == 1 {
|
|
continue
|
|
}
|
|
panic("impossible: missing chunk")
|
|
}
|
|
}
|
|
for _, linktab := range h.links {
|
|
for _, chunk := range linktab {
|
|
if chunk == 0 {
|
|
panic("impossible: missing chunk")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// Reader is the actual read interface needed by NewReader.
|
|
// If the passed in io.Reader does not also have ReadByte,
|
|
// the NewReader will introduce its own buffering.
|
|
type Reader interface {
|
|
io.Reader
|
|
io.ByteReader
|
|
}
|
|
|
|
type step uint8
|
|
|
|
const (
|
|
copyData step = iota + 1
|
|
nextBlock
|
|
huffmanBytesBuffer
|
|
huffmanBytesReader
|
|
huffmanBufioReader
|
|
huffmanStringsReader
|
|
huffmanGenericReader
|
|
)
|
|
|
|
// Decompress state.
|
|
type decompressor struct {
|
|
// Input source.
|
|
r Reader
|
|
roffset int64
|
|
|
|
// Huffman decoders for literal/length, distance.
|
|
h1, h2 huffmanDecoder
|
|
|
|
// Length arrays used to define Huffman codes.
|
|
bits *[maxNumLit + maxNumDist]int
|
|
codebits *[numCodes]int
|
|
|
|
// Output history, buffer.
|
|
dict dictDecoder
|
|
|
|
// Next step in the decompression,
|
|
// and decompression state.
|
|
step step
|
|
stepState int
|
|
err error
|
|
toRead []byte
|
|
hl, hd *huffmanDecoder
|
|
copyLen int
|
|
copyDist int
|
|
|
|
// Temporary buffer (avoids repeated allocation).
|
|
buf [4]byte
|
|
|
|
// Input bits, in top of b.
|
|
b uint32
|
|
|
|
nb uint
|
|
final bool
|
|
}
|
|
|
|
func (f *decompressor) nextBlock() {
|
|
for f.nb < 1+2 {
|
|
if f.err = f.moreBits(); f.err != nil {
|
|
return
|
|
}
|
|
}
|
|
f.final = f.b&1 == 1
|
|
f.b >>= 1
|
|
typ := f.b & 3
|
|
f.b >>= 2
|
|
f.nb -= 1 + 2
|
|
switch typ {
|
|
case 0:
|
|
f.dataBlock()
|
|
if debugDecode {
|
|
fmt.Println("stored block")
|
|
}
|
|
case 1:
|
|
// compressed, fixed Huffman tables
|
|
f.hl = &fixedHuffmanDecoder
|
|
f.hd = nil
|
|
f.huffmanBlockDecoder()
|
|
if debugDecode {
|
|
fmt.Println("predefinied huffman block")
|
|
}
|
|
case 2:
|
|
// compressed, dynamic Huffman tables
|
|
if f.err = f.readHuffman(); f.err != nil {
|
|
break
|
|
}
|
|
f.hl = &f.h1
|
|
f.hd = &f.h2
|
|
f.huffmanBlockDecoder()
|
|
if debugDecode {
|
|
fmt.Println("dynamic huffman block")
|
|
}
|
|
default:
|
|
// 3 is reserved.
|
|
if debugDecode {
|
|
fmt.Println("reserved data block encountered")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
}
|
|
}
|
|
|
|
func (f *decompressor) Read(b []byte) (int, error) {
|
|
for {
|
|
if len(f.toRead) > 0 {
|
|
n := copy(b, f.toRead)
|
|
f.toRead = f.toRead[n:]
|
|
if len(f.toRead) == 0 {
|
|
return n, f.err
|
|
}
|
|
return n, nil
|
|
}
|
|
if f.err != nil {
|
|
return 0, f.err
|
|
}
|
|
|
|
f.doStep()
|
|
|
|
if f.err != nil && len(f.toRead) == 0 {
|
|
f.toRead = f.dict.readFlush() // Flush what's left in case of error
|
|
}
|
|
}
|
|
}
|
|
|
|
// WriteTo implements the io.WriteTo interface for io.Copy and friends.
|
|
func (f *decompressor) WriteTo(w io.Writer) (int64, error) {
|
|
total := int64(0)
|
|
flushed := false
|
|
for {
|
|
if len(f.toRead) > 0 {
|
|
n, err := w.Write(f.toRead)
|
|
total += int64(n)
|
|
if err != nil {
|
|
f.err = err
|
|
return total, err
|
|
}
|
|
if n != len(f.toRead) {
|
|
return total, io.ErrShortWrite
|
|
}
|
|
f.toRead = f.toRead[:0]
|
|
}
|
|
if f.err != nil && flushed {
|
|
if f.err == io.EOF {
|
|
return total, nil
|
|
}
|
|
return total, f.err
|
|
}
|
|
if f.err == nil {
|
|
f.doStep()
|
|
}
|
|
if len(f.toRead) == 0 && f.err != nil && !flushed {
|
|
f.toRead = f.dict.readFlush() // Flush what's left in case of error
|
|
flushed = true
|
|
}
|
|
}
|
|
}
|
|
|
|
func (f *decompressor) Close() error {
|
|
if f.err == io.EOF {
|
|
return nil
|
|
}
|
|
return f.err
|
|
}
|
|
|
|
// RFC 1951 section 3.2.7.
|
|
// Compression with dynamic Huffman codes
|
|
|
|
var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
|
|
|
|
func (f *decompressor) readHuffman() error {
|
|
// HLIT[5], HDIST[5], HCLEN[4].
|
|
for f.nb < 5+5+4 {
|
|
if err := f.moreBits(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
nlit := int(f.b&0x1F) + 257
|
|
if nlit > maxNumLit {
|
|
if debugDecode {
|
|
fmt.Println("nlit > maxNumLit", nlit)
|
|
}
|
|
return CorruptInputError(f.roffset)
|
|
}
|
|
f.b >>= 5
|
|
ndist := int(f.b&0x1F) + 1
|
|
if ndist > maxNumDist {
|
|
if debugDecode {
|
|
fmt.Println("ndist > maxNumDist", ndist)
|
|
}
|
|
return CorruptInputError(f.roffset)
|
|
}
|
|
f.b >>= 5
|
|
nclen := int(f.b&0xF) + 4
|
|
// numCodes is 19, so nclen is always valid.
|
|
f.b >>= 4
|
|
f.nb -= 5 + 5 + 4
|
|
|
|
// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
|
|
for i := 0; i < nclen; i++ {
|
|
for f.nb < 3 {
|
|
if err := f.moreBits(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
f.codebits[codeOrder[i]] = int(f.b & 0x7)
|
|
f.b >>= 3
|
|
f.nb -= 3
|
|
}
|
|
for i := nclen; i < len(codeOrder); i++ {
|
|
f.codebits[codeOrder[i]] = 0
|
|
}
|
|
if !f.h1.init(f.codebits[0:]) {
|
|
if debugDecode {
|
|
fmt.Println("init codebits failed")
|
|
}
|
|
return CorruptInputError(f.roffset)
|
|
}
|
|
|
|
// HLIT + 257 code lengths, HDIST + 1 code lengths,
|
|
// using the code length Huffman code.
|
|
for i, n := 0, nlit+ndist; i < n; {
|
|
x, err := f.huffSym(&f.h1)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if x < 16 {
|
|
// Actual length.
|
|
f.bits[i] = x
|
|
i++
|
|
continue
|
|
}
|
|
// Repeat previous length or zero.
|
|
var rep int
|
|
var nb uint
|
|
var b int
|
|
switch x {
|
|
default:
|
|
return InternalError("unexpected length code")
|
|
case 16:
|
|
rep = 3
|
|
nb = 2
|
|
if i == 0 {
|
|
if debugDecode {
|
|
fmt.Println("i==0")
|
|
}
|
|
return CorruptInputError(f.roffset)
|
|
}
|
|
b = f.bits[i-1]
|
|
case 17:
|
|
rep = 3
|
|
nb = 3
|
|
b = 0
|
|
case 18:
|
|
rep = 11
|
|
nb = 7
|
|
b = 0
|
|
}
|
|
for f.nb < nb {
|
|
if err := f.moreBits(); err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits:", err)
|
|
}
|
|
return err
|
|
}
|
|
}
|
|
rep += int(f.b & uint32(1<<(nb®SizeMaskUint32)-1))
|
|
f.b >>= nb & regSizeMaskUint32
|
|
f.nb -= nb
|
|
if i+rep > n {
|
|
if debugDecode {
|
|
fmt.Println("i+rep > n", i, rep, n)
|
|
}
|
|
return CorruptInputError(f.roffset)
|
|
}
|
|
for j := 0; j < rep; j++ {
|
|
f.bits[i] = b
|
|
i++
|
|
}
|
|
}
|
|
|
|
if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
|
|
if debugDecode {
|
|
fmt.Println("init2 failed")
|
|
}
|
|
return CorruptInputError(f.roffset)
|
|
}
|
|
|
|
// As an optimization, we can initialize the maxRead bits to read at a time
|
|
// for the HLIT tree to the length of the EOB marker since we know that
|
|
// every block must terminate with one. This preserves the property that
|
|
// we never read any extra bytes after the end of the DEFLATE stream.
|
|
if f.h1.maxRead < f.bits[endBlockMarker] {
|
|
f.h1.maxRead = f.bits[endBlockMarker]
|
|
}
|
|
if !f.final {
|
|
// If not the final block, the smallest block possible is
|
|
// a predefined table, BTYPE=01, with a single EOB marker.
|
|
// This will take up 3 + 7 bits.
|
|
f.h1.maxRead += 10
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Copy a single uncompressed data block from input to output.
|
|
func (f *decompressor) dataBlock() {
|
|
// Uncompressed.
|
|
// Discard current half-byte.
|
|
left := (f.nb) & 7
|
|
f.nb -= left
|
|
f.b >>= left
|
|
|
|
offBytes := f.nb >> 3
|
|
// Unfilled values will be overwritten.
|
|
f.buf[0] = uint8(f.b)
|
|
f.buf[1] = uint8(f.b >> 8)
|
|
f.buf[2] = uint8(f.b >> 16)
|
|
f.buf[3] = uint8(f.b >> 24)
|
|
|
|
f.roffset += int64(offBytes)
|
|
f.nb, f.b = 0, 0
|
|
|
|
// Length then ones-complement of length.
|
|
nr, err := io.ReadFull(f.r, f.buf[offBytes:4])
|
|
f.roffset += int64(nr)
|
|
if err != nil {
|
|
f.err = noEOF(err)
|
|
return
|
|
}
|
|
n := uint16(f.buf[0]) | uint16(f.buf[1])<<8
|
|
nn := uint16(f.buf[2]) | uint16(f.buf[3])<<8
|
|
if nn != ^n {
|
|
if debugDecode {
|
|
ncomp := ^n
|
|
fmt.Println("uint16(nn) != uint16(^n)", nn, ncomp)
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
if n == 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
f.finishBlock()
|
|
return
|
|
}
|
|
|
|
f.copyLen = int(n)
|
|
f.copyData()
|
|
}
|
|
|
|
// copyData copies f.copyLen bytes from the underlying reader into f.hist.
|
|
// It pauses for reads when f.hist is full.
|
|
func (f *decompressor) copyData() {
|
|
buf := f.dict.writeSlice()
|
|
if len(buf) > f.copyLen {
|
|
buf = buf[:f.copyLen]
|
|
}
|
|
|
|
cnt, err := io.ReadFull(f.r, buf)
|
|
f.roffset += int64(cnt)
|
|
f.copyLen -= cnt
|
|
f.dict.writeMark(cnt)
|
|
if err != nil {
|
|
f.err = noEOF(err)
|
|
return
|
|
}
|
|
|
|
if f.dict.availWrite() == 0 || f.copyLen > 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
f.step = copyData
|
|
return
|
|
}
|
|
f.finishBlock()
|
|
}
|
|
|
|
func (f *decompressor) finishBlock() {
|
|
if f.final {
|
|
if f.dict.availRead() > 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
}
|
|
f.err = io.EOF
|
|
}
|
|
f.step = nextBlock
|
|
}
|
|
|
|
func (f *decompressor) doStep() {
|
|
switch f.step {
|
|
case copyData:
|
|
f.copyData()
|
|
case nextBlock:
|
|
f.nextBlock()
|
|
case huffmanBytesBuffer:
|
|
f.huffmanBytesBuffer()
|
|
case huffmanBytesReader:
|
|
f.huffmanBytesReader()
|
|
case huffmanBufioReader:
|
|
f.huffmanBufioReader()
|
|
case huffmanStringsReader:
|
|
f.huffmanStringsReader()
|
|
case huffmanGenericReader:
|
|
f.huffmanGenericReader()
|
|
default:
|
|
panic("BUG: unexpected step state")
|
|
}
|
|
}
|
|
|
|
// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
|
|
func noEOF(e error) error {
|
|
if e == io.EOF {
|
|
return io.ErrUnexpectedEOF
|
|
}
|
|
return e
|
|
}
|
|
|
|
func (f *decompressor) moreBits() error {
|
|
c, err := f.r.ReadByte()
|
|
if err != nil {
|
|
return noEOF(err)
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << (f.nb & regSizeMaskUint32)
|
|
f.nb += 8
|
|
return nil
|
|
}
|
|
|
|
// Read the next Huffman-encoded symbol from f according to h.
|
|
func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
|
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
|
|
// with single element, huffSym must error on these two edge cases. In both
|
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it
|
|
// satisfy the n == 0 check below.
|
|
n := uint(h.maxRead)
|
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
|
|
// but is smart enough to keep local variables in registers, so use nb and b,
|
|
// inline call to moreBits and reassign b,nb back to f on return.
|
|
nb, b := f.nb, f.b
|
|
for {
|
|
for nb < n {
|
|
c, err := f.r.ReadByte()
|
|
if err != nil {
|
|
f.b = b
|
|
f.nb = nb
|
|
return 0, noEOF(err)
|
|
}
|
|
f.roffset++
|
|
b |= uint32(c) << (nb & regSizeMaskUint32)
|
|
nb += 8
|
|
}
|
|
chunk := h.chunks[b&(huffmanNumChunks-1)]
|
|
n = uint(chunk & huffmanCountMask)
|
|
if n > huffmanChunkBits {
|
|
chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
|
|
n = uint(chunk & huffmanCountMask)
|
|
}
|
|
if n <= nb {
|
|
if n == 0 {
|
|
f.b = b
|
|
f.nb = nb
|
|
if debugDecode {
|
|
fmt.Println("huffsym: n==0")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return 0, f.err
|
|
}
|
|
f.b = b >> (n & regSizeMaskUint32)
|
|
f.nb = nb - n
|
|
return int(chunk >> huffmanValueShift), nil
|
|
}
|
|
}
|
|
}
|
|
|
|
func makeReader(r io.Reader) Reader {
|
|
if rr, ok := r.(Reader); ok {
|
|
return rr
|
|
}
|
|
return bufio.NewReader(r)
|
|
}
|
|
|
|
func fixedHuffmanDecoderInit() {
|
|
fixedOnce.Do(func() {
|
|
// These come from the RFC section 3.2.6.
|
|
var bits [288]int
|
|
for i := 0; i < 144; i++ {
|
|
bits[i] = 8
|
|
}
|
|
for i := 144; i < 256; i++ {
|
|
bits[i] = 9
|
|
}
|
|
for i := 256; i < 280; i++ {
|
|
bits[i] = 7
|
|
}
|
|
for i := 280; i < 288; i++ {
|
|
bits[i] = 8
|
|
}
|
|
fixedHuffmanDecoder.init(bits[:])
|
|
})
|
|
}
|
|
|
|
func (f *decompressor) Reset(r io.Reader, dict []byte) error {
|
|
*f = decompressor{
|
|
r: makeReader(r),
|
|
bits: f.bits,
|
|
codebits: f.codebits,
|
|
h1: f.h1,
|
|
h2: f.h2,
|
|
dict: f.dict,
|
|
step: nextBlock,
|
|
}
|
|
f.dict.init(maxMatchOffset, dict)
|
|
return nil
|
|
}
|
|
|
|
// NewReader returns a new ReadCloser that can be used
|
|
// to read the uncompressed version of r.
|
|
// If r does not also implement io.ByteReader,
|
|
// the decompressor may read more data than necessary from r.
|
|
// It is the caller's responsibility to call Close on the ReadCloser
|
|
// when finished reading.
|
|
//
|
|
// The ReadCloser returned by NewReader also implements Resetter.
|
|
func NewReader(r io.Reader) io.ReadCloser {
|
|
fixedHuffmanDecoderInit()
|
|
|
|
var f decompressor
|
|
f.r = makeReader(r)
|
|
f.bits = new([maxNumLit + maxNumDist]int)
|
|
f.codebits = new([numCodes]int)
|
|
f.step = nextBlock
|
|
f.dict.init(maxMatchOffset, nil)
|
|
return &f
|
|
}
|
|
|
|
// NewReaderDict is like NewReader but initializes the reader
|
|
// with a preset dictionary. The returned Reader behaves as if
|
|
// the uncompressed data stream started with the given dictionary,
|
|
// which has already been read. NewReaderDict is typically used
|
|
// to read data compressed by NewWriterDict.
|
|
//
|
|
// The ReadCloser returned by NewReader also implements Resetter.
|
|
func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
|
|
fixedHuffmanDecoderInit()
|
|
|
|
var f decompressor
|
|
f.r = makeReader(r)
|
|
f.bits = new([maxNumLit + maxNumDist]int)
|
|
f.codebits = new([numCodes]int)
|
|
f.step = nextBlock
|
|
f.dict.init(maxMatchOffset, dict)
|
|
return &f
|
|
}
|