// Copyright (C) 2013-2018 by Maxim Bublis // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. package uuid import ( "crypto/md5" "crypto/rand" "crypto/sha1" "encoding/binary" "fmt" "hash" "io" "net" "sync" "time" ) // Difference in 100-nanosecond intervals between // UUID epoch (October 15, 1582) and Unix epoch (January 1, 1970). const epochStart = 122192928000000000 // EpochFunc is the function type used to provide the current time. type EpochFunc func() time.Time // HWAddrFunc is the function type used to provide hardware (MAC) addresses. type HWAddrFunc func() (net.HardwareAddr, error) // DefaultGenerator is the default UUID Generator used by this package. var DefaultGenerator Generator = NewGen() // NewV1 returns a UUID based on the current timestamp and MAC address. func NewV1() (UUID, error) { return DefaultGenerator.NewV1() } // NewV3 returns a UUID based on the MD5 hash of the namespace UUID and name. func NewV3(ns UUID, name string) UUID { return DefaultGenerator.NewV3(ns, name) } // NewV4 returns a randomly generated UUID. func NewV4() (UUID, error) { return DefaultGenerator.NewV4() } // NewV5 returns a UUID based on SHA-1 hash of the namespace UUID and name. func NewV5(ns UUID, name string) UUID { return DefaultGenerator.NewV5(ns, name) } // NewV6 returns a k-sortable UUID based on a timestamp and 48 bits of // pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit // order being adjusted to allow the UUID to be k-sortable. // // This is implemented based on revision 03 of the Peabody UUID draft, and may // be subject to change pending further revisions. Until the final specification // revision is finished, changes required to implement updates to the spec will // not be considered a breaking change. They will happen as a minor version // releases until the spec is final. func NewV6() (UUID, error) { return DefaultGenerator.NewV6() } // NewV7 returns a k-sortable UUID based on the current millisecond precision // UNIX epoch and 74 bits of pseudorandom data. It supports single-node batch generation (multiple UUIDs in the same timestamp) with a Monotonic Random counter. // // This is implemented based on revision 04 of the Peabody UUID draft, and may // be subject to change pending further revisions. Until the final specification // revision is finished, changes required to implement updates to the spec will // not be considered a breaking change. They will happen as a minor version // releases until the spec is final. func NewV7() (UUID, error) { return DefaultGenerator.NewV7() } // Generator provides an interface for generating UUIDs. type Generator interface { NewV1() (UUID, error) NewV3(ns UUID, name string) UUID NewV4() (UUID, error) NewV5(ns UUID, name string) UUID NewV6() (UUID, error) NewV7() (UUID, error) } // Gen is a reference UUID generator based on the specifications laid out in // RFC-4122 and DCE 1.1: Authentication and Security Services. This type // satisfies the Generator interface as defined in this package. // // For consumers who are generating V1 UUIDs, but don't want to expose the MAC // address of the node generating the UUIDs, the NewGenWithHWAF() function has been // provided as a convenience. See the function's documentation for more info. // // The authors of this package do not feel that the majority of users will need // to obfuscate their MAC address, and so we recommend using NewGen() to create // a new generator. type Gen struct { clockSequenceOnce sync.Once hardwareAddrOnce sync.Once storageMutex sync.Mutex rand io.Reader epochFunc EpochFunc hwAddrFunc HWAddrFunc lastTime uint64 clockSequence uint16 hardwareAddr [6]byte } // GenOption is a function type that can be used to configure a Gen generator. type GenOption func(*Gen) // interface check -- build will fail if *Gen doesn't satisfy Generator var _ Generator = (*Gen)(nil) // NewGen returns a new instance of Gen with some default values set. Most // people should use this. func NewGen() *Gen { return NewGenWithHWAF(defaultHWAddrFunc) } // NewGenWithHWAF builds a new UUID generator with the HWAddrFunc provided. Most // consumers should use NewGen() instead. // // This is used so that consumers can generate their own MAC addresses, for use // in the generated UUIDs, if there is some concern about exposing the physical // address of the machine generating the UUID. // // The Gen generator will only invoke the HWAddrFunc once, and cache that MAC // address for all the future UUIDs generated by it. If you'd like to switch the // MAC address being used, you'll need to create a new generator using this // function. func NewGenWithHWAF(hwaf HWAddrFunc) *Gen { return NewGenWithOptions(WithHWAddrFunc(hwaf)) } // NewGenWithOptions returns a new instance of Gen with the options provided. // Most people should use NewGen() or NewGenWithHWAF() instead. // // To customize the generator, you can pass in one or more GenOption functions. // For example: // // gen := NewGenWithOptions( // WithHWAddrFunc(myHWAddrFunc), // WithEpochFunc(myEpochFunc), // WithRandomReader(myRandomReader), // ) // // NewGenWithOptions(WithHWAddrFunc(myHWAddrFunc)) is equivalent to calling // NewGenWithHWAF(myHWAddrFunc) // NewGenWithOptions() is equivalent to calling NewGen() func NewGenWithOptions(opts ...GenOption) *Gen { gen := &Gen{ epochFunc: time.Now, hwAddrFunc: defaultHWAddrFunc, rand: rand.Reader, } for _, opt := range opts { opt(gen) } return gen } // WithHWAddrFunc is a GenOption that allows you to provide your own HWAddrFunc // function. // When this option is nil, the defaultHWAddrFunc is used. func WithHWAddrFunc(hwaf HWAddrFunc) GenOption { return func(gen *Gen) { if hwaf == nil { hwaf = defaultHWAddrFunc } gen.hwAddrFunc = hwaf } } // WithEpochFunc is a GenOption that allows you to provide your own EpochFunc // function. // When this option is nil, time.Now is used. func WithEpochFunc(epochf EpochFunc) GenOption { return func(gen *Gen) { if epochf == nil { epochf = time.Now } gen.epochFunc = epochf } } // WithRandomReader is a GenOption that allows you to provide your own random // reader. // When this option is nil, the default rand.Reader is used. func WithRandomReader(reader io.Reader) GenOption { return func(gen *Gen) { if reader == nil { reader = rand.Reader } gen.rand = reader } } // NewV1 returns a UUID based on the current timestamp and MAC address. func (g *Gen) NewV1() (UUID, error) { u := UUID{} timeNow, clockSeq, err := g.getClockSequence(false) if err != nil { return Nil, err } binary.BigEndian.PutUint32(u[0:], uint32(timeNow)) binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>32)) binary.BigEndian.PutUint16(u[6:], uint16(timeNow>>48)) binary.BigEndian.PutUint16(u[8:], clockSeq) hardwareAddr, err := g.getHardwareAddr() if err != nil { return Nil, err } copy(u[10:], hardwareAddr) u.SetVersion(V1) u.SetVariant(VariantRFC4122) return u, nil } // NewV3 returns a UUID based on the MD5 hash of the namespace UUID and name. func (g *Gen) NewV3(ns UUID, name string) UUID { u := newFromHash(md5.New(), ns, name) u.SetVersion(V3) u.SetVariant(VariantRFC4122) return u } // NewV4 returns a randomly generated UUID. func (g *Gen) NewV4() (UUID, error) { u := UUID{} if _, err := io.ReadFull(g.rand, u[:]); err != nil { return Nil, err } u.SetVersion(V4) u.SetVariant(VariantRFC4122) return u, nil } // NewV5 returns a UUID based on SHA-1 hash of the namespace UUID and name. func (g *Gen) NewV5(ns UUID, name string) UUID { u := newFromHash(sha1.New(), ns, name) u.SetVersion(V5) u.SetVariant(VariantRFC4122) return u } // NewV6 returns a k-sortable UUID based on a timestamp and 48 bits of // pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit // order being adjusted to allow the UUID to be k-sortable. // // This is implemented based on revision 03 of the Peabody UUID draft, and may // be subject to change pending further revisions. Until the final specification // revision is finished, changes required to implement updates to the spec will // not be considered a breaking change. They will happen as a minor version // releases until the spec is final. func (g *Gen) NewV6() (UUID, error) { var u UUID if _, err := io.ReadFull(g.rand, u[10:]); err != nil { return Nil, err } timeNow, clockSeq, err := g.getClockSequence(false) if err != nil { return Nil, err } binary.BigEndian.PutUint32(u[0:], uint32(timeNow>>28)) // set time_high binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>12)) // set time_mid binary.BigEndian.PutUint16(u[6:], uint16(timeNow&0xfff)) // set time_low (minus four version bits) binary.BigEndian.PutUint16(u[8:], clockSeq&0x3fff) // set clk_seq_hi_res (minus two variant bits) u.SetVersion(V6) u.SetVariant(VariantRFC4122) return u, nil } // getClockSequence returns the epoch and clock sequence for V1,V6 and V7 UUIDs. // // When useUnixTSMs is false, it uses the Coordinated Universal Time (UTC) as a count of 100- // // nanosecond intervals since 00:00:00.00, 15 October 1582 (the date of Gregorian reform to the Christian calendar). func (g *Gen) getClockSequence(useUnixTSMs bool) (uint64, uint16, error) { var err error g.clockSequenceOnce.Do(func() { buf := make([]byte, 2) if _, err = io.ReadFull(g.rand, buf); err != nil { return } g.clockSequence = binary.BigEndian.Uint16(buf) }) if err != nil { return 0, 0, err } g.storageMutex.Lock() defer g.storageMutex.Unlock() var timeNow uint64 if useUnixTSMs { timeNow = uint64(g.epochFunc().UnixMilli()) } else { timeNow = g.getEpoch() } // Clock didn't change since last UUID generation. // Should increase clock sequence. if timeNow <= g.lastTime { g.clockSequence++ } g.lastTime = timeNow return timeNow, g.clockSequence, nil } // NewV7 returns a k-sortable UUID based on the current millisecond precision // UNIX epoch and 74 bits of pseudorandom data. // // This is implemented based on revision 04 of the Peabody UUID draft, and may // be subject to change pending further revisions. Until the final specification // revision is finished, changes required to implement updates to the spec will // not be considered a breaking change. They will happen as a minor version // releases until the spec is final. func (g *Gen) NewV7() (UUID, error) { var u UUID /* https://www.ietf.org/archive/id/draft-peabody-dispatch-new-uuid-format-04.html#name-uuid-version-7 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | unix_ts_ms | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | unix_ts_ms | ver | rand_a | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |var| rand_b | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | rand_b | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ ms, clockSeq, err := g.getClockSequence(true) if err != nil { return Nil, err } //UUIDv7 features a 48 bit timestamp. First 32bit (4bytes) represents seconds since 1970, followed by 2 bytes for the ms granularity. u[0] = byte(ms >> 40) //1-6 bytes: big-endian unsigned number of Unix epoch timestamp u[1] = byte(ms >> 32) u[2] = byte(ms >> 24) u[3] = byte(ms >> 16) u[4] = byte(ms >> 8) u[5] = byte(ms) //support batching by using a monotonic pseudo-random sequence //The 6th byte contains the version and partially rand_a data. //We will lose the most significant bites from the clockSeq (with SetVersion), but it is ok, we need the least significant that contains the counter to ensure the monotonic property binary.BigEndian.PutUint16(u[6:8], clockSeq) // set rand_a with clock seq which is random and monotonic //override first 4bits of u[6]. u.SetVersion(V7) //set rand_b 64bits of pseudo-random bits (first 2 will be overridden) if _, err = io.ReadFull(g.rand, u[8:16]); err != nil { return Nil, err } //override first 2 bits of byte[8] for the variant u.SetVariant(VariantRFC4122) return u, nil } // Returns the hardware address. func (g *Gen) getHardwareAddr() ([]byte, error) { var err error g.hardwareAddrOnce.Do(func() { var hwAddr net.HardwareAddr if hwAddr, err = g.hwAddrFunc(); err == nil { copy(g.hardwareAddr[:], hwAddr) return } // Initialize hardwareAddr randomly in case // of real network interfaces absence. if _, err = io.ReadFull(g.rand, g.hardwareAddr[:]); err != nil { return } // Set multicast bit as recommended by RFC-4122 g.hardwareAddr[0] |= 0x01 }) if err != nil { return []byte{}, err } return g.hardwareAddr[:], nil } // Returns the difference between UUID epoch (October 15, 1582) // and current time in 100-nanosecond intervals. func (g *Gen) getEpoch() uint64 { return epochStart + uint64(g.epochFunc().UnixNano()/100) } // Returns the UUID based on the hashing of the namespace UUID and name. func newFromHash(h hash.Hash, ns UUID, name string) UUID { u := UUID{} h.Write(ns[:]) h.Write([]byte(name)) copy(u[:], h.Sum(nil)) return u } var netInterfaces = net.Interfaces // Returns the hardware address. func defaultHWAddrFunc() (net.HardwareAddr, error) { ifaces, err := netInterfaces() if err != nil { return []byte{}, err } for _, iface := range ifaces { if len(iface.HardwareAddr) >= 6 { return iface.HardwareAddr, nil } } return []byte{}, fmt.Errorf("uuid: no HW address found") }